(Z)-α-Selanyl Alkenyl Grignard Reagents as Convenient Precursors for Stereoselective Synthesis of Trisubstituted Alkenes

Ming Zhong CAI*, Chun Yun PENG, Jia Di HUANG

Department of Chemistry, Jiangxi Normal University, Nanchang 330027

Abstract: (Z)- α -Selanyl alkenyl Grignard reagents **2** were prepared conveniently by treatment of α -bromovinylselenides **1** with magnesium filings in THF. Intermediates **2** were reacted with alkyl iodides in the presence of CuI or Pd(PPh₃)₄ to afford (Z)-1,2-disubstituted vinylselenides **3**, which were cross-coupled with Grignard reagents in the presence of (PPh₃)₂NiCl₂ to give trisubstituted alkenes **4** stereoselectively in good yields.

Keywords: α -Bromovinylselenides, (Z)- α -selanyl alkenyl Grignard reagents, stereoselective synthesis, trisubstituted alkene.

Many biologically active compounds occurring in nature possess the structural skeleton of trisubstituted alkenes¹⁻³. Difunctional group reagents, which have two different functional groups linked to the olefinic carbon atoms, for example, Se-Zr, Se-B, Se-Sn play important roles in organic synthesis, especially in developing a lot of convenient methods for stereoselective synthesis of substituted alkenes⁴. Recently, Tingoli *et al.*⁵ reported that (Z)- α -selanylvinyl *p*-toluenesulfonates can undergo sequential transition metal catalyzed cross-coupling reaction with nucleophiles, providing a convenient method for the stereoselective synthesis of trisubstituted alkenes. Huang *et al.*⁶ described that (E)- α -selanylvinylstannanes prepared from alkynylselenides by hydrostannation can easily transform to trisubstituted alkenes via the reaction of α -bromovinylselenides with magnesium filings in THF giving the (Z)- α -selanyl alkenyl Grignard reagents, which are then reacted with alkyl iodides in the presence of CuI or Pd(PPh₃)₄. Thus obtained 1,2-disubstituted vinylselenides retained (Z)-configuration (**Scheme 1**).

^{*}E-mail: caimz@fm365.com

1165

The required starting α -bromovinylselenides **1** were easily prepared in good yields with high stereoselectivity according to the literature procedure⁷. The reaction of α -bromovinylselenides with magnesium filings in THF gave (Z)- α -selanyl alkenyl Grignard reagents **2**, which were reacted with methyl iodide at 0°C to give (Z)-1,2-disubstituted vinylselenides **3** in good yields. The intermediates **2** was found to present lower reactivity with alkyl halides other than methyl iodide, however, it was readily alkylated by butyl iodide in the presence of a catalytic amount of CuI. In the presence of Pd(PPh₃)₄ catalyst, intermediates **2** could also undergo cross-coupling reaction with iodobenzene at room temperature to give (Z)-1,2-disubstituted vinyl selenides **3** in good yields. The experimental results are summarized in **Table 1**.

Entry	\mathbb{R}^1	\mathbb{R}^2	Catalyst	Product ^a	Yield ^b (%)	
1	$n-C_4H_9$	CH ₃		3a	66	
2	$n-C_4H_9$	$n-C_4H_9$	CuI	3b	62	
3	$n-C_4H_9$	Ph	Pd(PPh ₃) ₄	3c	58	
4	Ph	CH ₃		3d	70	
5	Ph	$n-C_4H_9$	CuI	3e	65	
6	Ph	Ph	Pd(PPh ₃) ₄	3f	60	
7	<i>n</i> -C ₆ H ₁₃	CH ₃		3g	64	
8	$n-C_6H_{13}$	$n-C_4H_9$	CuI	3h	61	
9	$n-C_6H_{13}$	Ph	Pd(PPh ₃) ₄	3i	59	

 Table 1
 Synthesis of (Z)- 1,2-disubstituted vinylselenides

^a All products were characterized by IR₂ ¹H NMR and elemental analyses.

^b Isolated yield based on the α -bromovinylselenide used.

Vinylselenides are important synthetic intermediates owing to the versatile reactivity of the selanyl group and the carbon-carbon double bond⁸. (Z)-1,2-disubstituted vinylselenides **3** are also effective precursors for stereoselective synthesis of trisubstituted alkenes. Therefore, we carried out the cross-coupling reaction of **3** with Grignard reagents in the presence of $(PPh_3)_2NiCl_2$ at room temperature in THF for 48 h to give the selenium free trisubstituted alkenes **4** in good yields with retention of configuration (**Scheme 2**).

Scheme 2 R^{1} SePh H R^{2} $R^{3}MgX$ $(PPh_{3})_{2}NiCl_{2}$ H R^{3} R^{2} R^{2} $R^{3}MgX$ $(PPh_{3})_{2}NiCl_{2}$ H R^{2} H R^{2} R^{2} R^{2} $R^{3}=Me, 64\%$ $4b: R^{1}=Bu, R^{2}=Ph, R^{3}=Me, 64\%$ $4c: R^{1}=Ph, R^{2}=Bu, R^{3}=Ph, 68\%$

In conclusion, we have developed a novel approach to the stereoselective synthesis of trisubstituted alkenes by using (Z)- α -selanyl alkenyl Grignard reagents as the precursors. Comparing to the reported methods^{5,6}, the present method for the synthesis of stereodefined trisubstituted alkenes has the advantages of readily available starting

1166 (Z)-α-Selanyl Alkenyl Grignard Reagents for Stereoselective Synthesis

materials, straightforward and simple procedures, mild reaction conditions and good yields.

Experimental

¹H NMR spectra were recorded on a EM-360(90MHz) spectrometer with TMS as an internal standard (δ in ppm). IR spectra were obtained on a Perkin-Elmer 683 instrument as neat films. Microanalysis were measured using a Yanaco MT-3 CHN microelemental analyzer. THF was distilled from sodium-benzophenone ketyl before use. Pd(PPh₃)₄ and (PPh₃)₂NiCl₂ were prepared according to literature procedure^{9,10}.

General procedure for the synthesis of 3a, 3d, 3g

A drop of ethylene dibromide was added to magnesium filings (2 mmol) in THF (2.5 mL) to start the reaction and α -bromovinylselenide (2 mmol) was then added. The mixture was stirred under nitrogen at 60°C for 4 h. After being cooled to 0°C, methyl iodide (2.5 mmol) in THF (1 mL) was added and the mixture was stirred at 0°C for 10 min and then at room temperature for 2 h. The mixture was treated with sat. aq NH₄Cl(5 mL) and extracted with ether (2×30 mL). The ethereal solution was washed with water (3×20 mL) and dried (MgSO₄). Removal of solvent under reduced pressure gave an oil which was purified by column chromatography on silica gel using light petroleum as eluent.

General procedure for the synthesis of 3b, 3e, 3h

Butyl iodide (2.2 mmol) in THF (2 mL) and CuI (0.2 mmol) were added into the Grignard reagent **2** prepared as above and the mixture was stirred at 0° C for 1 h and then at room temperature for 2 h. After the usual workup (see above) the residue was chromatographed through a silica gel column using light petroleum as eluent.

General procedure for the synthesis of 3c, 3f, 3i

Iodobenzene (2.2 mmol) in THF(2 mL) and Pd(PPh₃)₄ (0.1 mmol) were added into the Grignard reagent **2** prepared as above and the mixture was stirred at room temperature for 6 h. After the usual workup (see above) the residue was chromatographed on a silica gel column using petroleum as eluent.

General procedure for the synthesis of trisubstituted alkenes 4

To a stirred suspension of $(PPh_3)_2NiCl_2$ (0.05 mmol) and (Z)-1,2-disubstituted vinylselenide **3** (1 mmol) in THF (5 mL) was added a solution of $R^3MgX(4 \text{ mmol})$ in THF (6 mL) at room temperature and the mixture was stirred for 48 h. After the usual workup (see above) the residue was chromatographed on a silica gel column using petroleum as eluent.

Acknowledgment

We thank the National Natural Science Foundation of China(Project 20062002) for financial support.

References

- P. R. Marfat, P. McGuirk, P. Helquist, J. Org. Chem., 1979, 44, 3888.
 M. Obayashi, K, Utimoto, H. Nozaki, Bull. Chem. Soc. Jpn., 1979, 52, 1760.
- 3. Y. Masaki, K. Sakuma, K. Kaji, J. Chem. Soc., Chem. Commun., 1980, 434.
- 4. (a) L. S. Zhu, Z. Z. Huang, X. Huang, *Tetrahedron*, 1996, 52, 9819. (b) X. Huang, Y. Ma, Synth. Commun., 1997, 27, 2407. (c) D. Y. Yang, X. Huang, J. Organomet. Chem., 1996, 523, 139.
- 5. M. Tingoli, M. Tiecco, L. Testaferri, Tetrahedron, 1995, 51, 4691.
- 6. X. Huang, Y. Ma, Synthesis, 1997, 417.
- 7. J. V. Comasseto, P. H. Menezes, H. A. Stefani, A. L. Braga, Tetrahedron, 1996, 52, 9687.
- J. V. Comasseto, J. Organomet. Chem., **1983**, 253, 131.
 D. R. Coulson, *Inorg. Synth.*, **1972**, *13*, 121.
- 10. L. M. Venazi, J. Chem. Soc., 1958, 719.

Received 15 March, 2002